" THE
~ DEFINITIVE
'_I;GUIDE 10
MAGENTO 2

@ Magento 2



mailto:sales@nexcess.net
https://www.nexcess.net/
https://magento.com/

I 'TM

NEXCESS

beyond hosting.

Magento 2 is an enterprise class eCommerce platform created by Magento, Inc. that may be used in conjunction with Nexcess services as well as the services of other web-hosting
providers. There is no specific relationship, sponsorship, or affiliation between Nexcess and the Magento 2 platform or Magento, Inc. Furthermore, this guide merely provides the

opinions of Nexcess and should not be interpreted as an endorsement of Nexcess by the Magento 2 platform or Magento, Inc.

OUR STORY

We believe in the promise of the Cloud: scalability,
security, performance, and ease of use. Together
with our team, clients, and partners, we've built
something better.

Since 2000, we've been deploying
application-specific hosting platforms that empower
the way you do business. With over 10 years of
extensive testing, support, and hosting experience

— with tens of thousands of Magento Commerce and
Open Source stores — we've created a Cloud platform
designed around you.

Deploy fast, perform faster, and scale when you need
it with Nexcess Cloud.



https://www.nexcess.net/cloud/hosting
https://www.nexcess.net/

EXECUTIVE
SUMMARY

Magento 2 is the second major release of the
popular Magento eCommerce platform. Today,
Magento is one of the most widely used open
source eCommerce solutions in the world. This is
largely due to its flexibility for merchants looking
to design and customize their store. In part, this
flexibility stems from the extensive Magento
ecosystem of third party plug-ins. Moving beyond
extensions, the Magento 2 architecture allows
developers to further customize the store to the
merchant’s requirements.

With this versatile nature, Magento requires
considerable resources to remain performant. A
sluggish, unresponsive store will drive users away
from even the best designed sites. All aspects of
the software stack require proper tuning for both
software itself and the hardware beneath. Improper
tuning of even seemingly insignificant variables
can cause bottlenecks and cascading issues that
derail performance.

This guide provides configuration and best
practices to keep your Magento 2 store at peak
performance. This information derives from 10
years' experience with Magento installations,
and includes everything from startup stores to
enterprise clusters. The system and service
configuration settings mirror the values we use
on our systems, with noted exceptions for
variables specific to store size and hardware
configuration. Near the end of this paper, we
provide a benchmark to demonstrate the
effectiveness of these optimizations.

The Definitive Guide to Optimizing Magento 2

W



SOFTWARE

CHANGES FROM
EXECUTIVE MAGENTO 1 TO
SUMMARY MAGENTO 2

3 Summary 8 Modern Code Base
8 Full-Page Caching

8 Native Varnish Caching
Support

9 PCl DSS-Friendly Features
9 Improved CLI Tools

9 Database Improverments

TECHNOLOGICAL
LANDSCAPE:
THEN VS. NOW

13 Then versus Now

17
20
24
28
32
36
39
40
46

OPTIMIZATIONS

Operating System

PHP

PHP-FPM

PHP Opcache

Apache

MySQL

MySQL Settings at a Glance
Magento 2 Caching

Varnish

TAGENT
BENCHMARK

52 Method
54 Results
58 Benchmarking Caveats

60 Recommendations

The Definitive Guide to Optimizing Magento 2

CONCLUDING
SUMMARY

63 Summary

65 Appendix




CONTENTS

©

Modern Code Base

®

Full-Page Caching

8 Native Varnish Caching
Support

PCl DSS-Friendly Features
9 Improved CLI Tools

©

SOFTWARE

CHANGES FROM
MAGENTO 1 To MODERN CODE BASE
MAGENTO 2 FULL-PAGE CACHING

©

Database Improvements

NATIVE VARNISH
CACHING SUPPORT

PCI DSS-FRIENDLY
FEATURES

IMPROVED CLI TOOLS

DATABASE
IMPROVEMENTS

The original version of Magento 1 was released in 2008. When
writing Magento 2, its developers noted its limitations and worked
to improve performance and flexibility.

The Definitive Guide to Optimizing Magento 2




MODERN CODE
BASE

FULL-PAGE
CACHING

NATIVE

VARNISH
CACHING
SUPPORT

The original version of Magento 1 was released in 2008. When
writing Magento 2, its developers noted its limitations and
worked to improve performance and flexibility. Magento 2 also
supports PHP 7, which provides huge performance gains on
identical hardware.

Magento 2 now supports full-page caching in both the free Open
Source (formerly Community Edition) and Magento Commerce
(formerly Enterprise Edition) versions. This feature was previously
exclusive to Open Source, leaving Magento Commerce users with
third party extensions as their only option. The full-page cache
(FPC) has been proven to provide significant performance increases
in Magento 1, and its availability in the free Open Source version
of Magento 2 is a welcome change.

Varnish is a reverse-proxy cache that allows a Magento store to
provide cached assets to visitors, rather than generate all assets
dynamically upon every page load. Varnish can increase store
visitor concurrency and lower load times significantly without
scaling out hardware.

However, implementing Varnish with Magento 1 was problematic
at best. Varnish configuration files, edge-side includes, and
managing non-cacheable content like shopping carts and
checkout pages were headaches even for skilled developers.

To improve Varnish—Magento 1 compatibility, we developed the
Turpentine extension.

With Magento 2, Varnish support is native. The entire Varnish
configuration can be managed by Magento itself boosting
performance without adding the complexity of third party
extensions like Turpentine.

The Definitive Guide to Optimizing Magento 2

PCI DSS-FRIENDLY
FEATURES

IMPROVED CLI
TOOLS

DATABASE
IMPROVEMENTS

PCl DSS compliance is a requirement for any Magento store that
accepts payment by credit card. During the Magento 1 lifecycle,
certain revisions to PCl requirements made achieving compliance
difficult for many Magento users. Audit trails, admin login histories,
secure authentication, and password policies are some examples.
Magento 2 improved these areas, giving merchants stronger inherent
security and making it easier to achieve PClI DSS compliance.

The CLI tools available with Magento 2 are extensive, with many
operations previously only executable through the admin interface
now available. This makes the platform more developer-friendly,
accelerating tasks such as enabling, disabling, and flushing the
cache during deployments.

While exclusive to the Enterprise Edition of Magento 2, it is
worth noting that databases can be distributed across multiple
instances. With this capability, the tables storing orders run on
hardware separate from the primary database running the site.
This accelerates performance during the checkout process — a
pain point for Magento 1 during high traffic. While configuring this
distribution is beyond the scope of this white paper, all high
traffic Enterprise-based stores should consider using this feature.




CONTENTS

13 Then versus Now

TECHNOLOGICAL
LANDSCAPE:
THEN VERSUS NOW

CENTOS 7

PHP 7

SOLID STATE DRIVES

VIRTUALIZED
ENVIRONMENTS

Many things have changed since the publication of our original
Magento performance guide in 2013.

The Definitive Guide to Optimizing Magento 2




TECHNOLOGICAL
LANDSCAPE:
THEN VERSUS NOW

Many things have changed since the publication
of our original Magento performance white paper
in 2013:

CentOS 6 was the most recent CentOS release.

CentOS 7 saw release in 2015, with many
improvements.

In June 2013, PHP 55 was the most current
version of PHP, which has since reached end of life.

PHP 5.6 is the only remaining supported
version of PHP 5, with all current development
effort focused on PHP 7.1 and later.

CPUs, memory, and solid state drives are
markedly better.

Current hardware is now generations ahead of
the hardware we used to benchmark Magento 1.

Virtualized environments are widely available,

which provide better scalability, versatility,
and performance than bare metal. Our current
Magento plans use OpenStack, which, among
other things, greatly simplifies migrations and
development site creation.

The Definitive Guide to Optimizing Magento 2

13



OPTIMIZATIONS

30 SN P-E N FES

17 Operating System

20 PHP

24 PHP-FPM

28 PHP Opcache

32 Apache

36 MySQOL

39 MySQL Settings at a Glance
40 Magento 2 Caching

46 Varnish

Modern applications like Magento 2 are resource-hungry and dependent

on proper system and service configurations to run efficiently.

The Definitive Guide to Optimizing Magento 2

Running an application like Magento 2 on a stock
system with the base variables set for services like
MySQL, PHP-FPM, and Apache almost guarantees
poor performance. Modern applications like
Magento 2 are resource-hungry and dependent

on proper system and service configurations to

run efficiently. Good information about how to
make these adjustments is scarce, and much of

it is outdated. Even our 2013 white paper, Magento

Hosting - Best Practices for Optimum
Performance, has drifted into obsolescence.

The next section focuses on various system
services and the optimum configuration for each.
Each entry explains the reasoning behind the
settings and includes any other considerations
worth taking into account, and we applied these
variables when benchmarking Magento 2 for this
white paper. As noted above, all system and
service configuration settings mirror the values
on Nexcess systems.



https://www.nexcess.net/resources/white-papers/
https://www.nexcess.net/resources/white-papers/
https://www.nexcess.net/resources/white-papers/

Our plans are designed around CentOS 7, an open
source upstream-compatible version of RedHat
Enterprise Linux 7. Major versions of CentOS have
support for 10-year intervals. For CentOS 7, updates
will continue until June 30 2024, providing long term
support that will likely outlast its hardware.

o P E RATI N G SYST E M CentOS ships with fairly conservative default
variables, but providing an exhaustive list of tunable
variables is beyond the scope of this paper. This
exercise instead targets four general settings that
provide the greatest return when trying to get the

most out of Magento 2.

The Definitive Guide to Optimizing Magento 2 17



OPERATING

SYSTEM

FILE SYSTEM
AND MOUNT
OPTIONS

Most modern operating systems such as CentOS 7 have switched
from EXT4 to XFS as the default file system. XFS is a modern
journaling file system that has numerous advantages including
greater scalability, quick recovery from file system issues, and faster
raw /O performance. The use of XFS is highly recommended for
any CentOS 7-based system, and EXT4 has no place in any modern
configuration.

Many older distributions of linux use EXT4 and by default, most
EXT4 Linux file systems log the time of access (atime). This means
that every time a file is read, the system updates the file's metadata
to include the most recent atime. When files number in the tens of
thousands, as is the case with Magento 2 and similar applications,
ths creates significant overhead. Therefore, disabling atime tends to
increase performance. However, XFS uses relatime instead of
atime, and so is unaffected by this change.

To disable in EXT4, add the noatime option to the end of your
mount options list in /etc/fstab for the partition containing your
Magento installation. The change will take effect the next time the
partition is mounted.

The Definitive Guide to Optimizing Magento 2

CHANGE
DEFAULT DISK
SCHEDULER

DISC SCHEDULER
QUEUE SIZE

PRECISE
PRIORITIES

The Linux kernel provides a method to adjust the disk scheduler
to tune I/0 performance to match the given hardware. There are
currently three scheduler options available in CentOS:

noop, deadline, and cfq (completely fair queuing). To restrain

scope, it is enough to know they exist to help optimize the 1/0
workload for the given hardware.

A server running Magento 2 benefits most from SSDs, or fast SAS
drives and a RAID controller. For this type of hardware, allowing the
kernel to re-order I/O writes wastes resources because the RAID
controller's scheduler already performs this function.

To prevent the kernel from duplicating this function, change noop
by issuing the command below, where sdX is the hardware device
or devices used by the system.

Attention: Issue the command in rc.local or equivalent, or it will
not persist over boot.

echo noop > /sys/block/sdX/queue/scheduler

The Linux disk 1/0O schedulers uses a queue to process I/0 requests.
This queue has a default size of 128 operations. Increasing this
queue puts more I/0O operations into memory and allows more data
in the queue, all of which is properly ordered by the scheduler.

If you are running HDDs and a scheduler other than noop, increasing
the queue to 256 will improve write efficiency.

Attention: Issue the command in rc.local or equivalent, or it will
not persist over boot.

echo 256 > /sys/block/sda/queue/nr_requests

If you are instead using SSDs and the noop scheduler, increasing this
setting will have little to no effect.

In Linux distributions, most processes are set to run at the same
priority level This creates potential scheduling contention between
processes that need to run in at higher priorities (PHP, MySQL)
versus processes that do not (cron jobs). We recommend strictly
prioritizing all system processes in categories from low to real-time

by setting values in 1imits.conf, as well as setting specific

application process priorities and Nice levels, as appropriate. For
more information, see the process-priority schedule in GitHub at
https://github.com/nexcess/magento-whitepaper-april-2018.

19


https://github.com/nexcess/magento-whitepaper-april-2018

PHP

Both Magento 1 and Magento 2 are written in PHP.
Generally speaking, stores that run the most current
and supported version of PHP tend to be faster and
more responsive than ones that do not.

Current Nexcess Cloud-based plans include support
for PHP 5.6 through 7.2. We strongly recommend
running Magento 2 with PHP 7.0 and later for
optimal performance. As of Magento 2.2.0, PHP 7.0
is now a minimum requirement, and PHP 7.1 the
most current and supported.

The Definitive Guide to Optimizing Magento 2

PHP and Magento: The Last 5 Years

Magento 1 was developed on the PHP 5 major
release, supporting up to PHP 5.6, which was
released in 2014. PHP 7.0 saw release In
December 2015, delivering fundamental changes
and and improvement to the PHP interpreter. PHP
reported a 50 percent increase in speed over the
previous 56 release. Other improvements include
significantly reduced memory usage, improved
exception handling, consistent 64-bit support for
modern operating systems, and the removal of
many old and unsupported SAPIs and extensions.

Seeking to capitalize on these improvements and
faster load times, Magento chose to support PHP
7 over PHP 5 when developing Magento 2. The
claim of “50 percent increase in speed” was
validated in our original benchmarking of
Magento 2 2015, and again in our Magento 2

white paper, Magento 2: Premium Performance
with PHP 7 and Varnish.

As of April 2018, Magento 1 does not natively
support PHP 7, although some third party
extensions attempt to breach this gap.

PHP 7.1 saw delivery in December 2016 with small
improvements. PHP 7.1 is likewise supported by
Magento and will remain in active development
until December 1, 2018. At time of publication,
PHP 7.2 is now available, but not yet actively
supported by Magento 2. This is primarily due to
the removal of the mcrypt libraries, which are an
older cryptographic library now considered
insecure by the community. Newer cryptographic
libraries, such as libsodium and others, are part
of the PHP 7.2 release. At time of publication,
there is no timeline for official PHP 7.2 support.



https://www.nexcess.net/resources/white-papers/magento2-php-varnish
https://www.nexcess.net/resources/white-papers/magento2-php-varnish

PHP RUNTIME
VARIABLES

Of the many variables within
PHP’s primary configuration
file, php.ini, only some
affect performance. These
variables are discussed in
detail below.

max_execution_time

max_execution_time sets the maximum time in
seconds a PHP script is allowed to run before being
killed. This variable prevents runaway scripts from
consuming system resources. As some Magento
admin functions take considerable time to run, we
recommend max_execution_time of 600 seconds.

max_execution_time = 600

max_input_time

max_input_time sets the maximum time in seconds
a PHP script is allowed to parse POST and GET input
data. The default is set to -1, which will inherit the
value from max_execution_time.

max_input_time = -1

memory_ limit

memory limit restricts how much memory in bytes
a script consumes. Any script reaching this limit is
killed, which limits the possibility of a runaway script
consuming excessive amounts of server memory.
Magento 2 recommends this be set to 768MB,

as do we.

memory_limit = 768M

upload max _filesize

upload _max_filesize sets the maximum size in
bytes allowed for each uploaded file. The default size is
relatively small at 2MB. Since Magento file imports are

often of significant size, we recommend setting to 512 MB.

upload_max_filesize = 512M

The Definitive Guide to Optimizing [\4[s[e[Elgite}4

post max_size

post_max_size sets the largest allowed amount of POST data
and is related to the upload_max_filesize variable. As such,
we recommend setting this to 512MB.

post _max_size = 512M

realpath_cache_size

realpath_cache size designates the size of the cache within
PHP that stores the paths to PHP files. When properly configured, it
can significantly improve performance for large PHP applications that
contain thousands of PHP files.

The realpath cache is used for PHP functions such as include ()

or require(), among others. When one of these PHP function calls
is invoked, PHP first checks its realpath cache to see if the path is
already cached, which would allow PHP to call the file directly instead
of performing many stat() or 1stat() calls to the actual file on
disk. For Magento 2, which uses deep file paths, this can save tens of
thousands of calls per page load.

As noted above, the realpath_cache size specifies the size of
this cache in bytes. PHP 7.2 recently increased this value from 16kB
to 4MB. This cache is not shared across PHP children, so each pro-
cess will have its own independent cache.

If open_basedir is enabled in PHP, it disables the realpath cache.
Safe mode would also disable the cache, but safe mode was removed
in PHP 54 and is no longer a concern in modern releases.

realpath_cache_size = 4M

realpath_cache_ttl

realpath_cache_ttl sets the frequency in seconds at which
realpath cache entries expire. We recommend increasing this value
from the default of 120 seconds to 300 seconds. The goal is to keep
the cache populated as long as possible. However, setting it longer
than glOO seconds may conflict with the PHP-FPM child lifetime
variable.

realpath _cache ttl = 300

)

23



PHP-FPM

PHP-FPM, or FastCGIl process manager, has three
available process managers that handle PHP-FPM
processing: static, ondemand, and dynamic.

We recommend the dynamic PM for Magento 2
environments. Though it grants excellent
performance and memory management,
improper tuning can lead to memory
exhaustion or poor performance.

The Definitive Guide to Optimizing Magento 2

Static is a simple
process manager (PM)
that designates the
amount of children
available to handle
incoming PHP requests.
While this can be
performed well, careless
use has the potential to
exhaust system memory
resources. As the name
suggests, static uses the
configured number of
PHP processes at all
times, even when the
system is idle.

Ondemand only creates
children as new requests
come in, then destroys
them when additional
requests exceed the
idle timeout or
max_request variables.
Although this keeps
memory leaks from
consuming excessive
system resources, it
involves some overhead
and is not the best
solution in terms of
performance.

Dynamic preforks a
configured amount of
the PHP processes in the
same manner as static,
while also allowing
scalability. In times of
high traffic, dynamic
creates additional PHP
processes to meet
demand. When no longer
needed, these additional
processes are destroyed
after their request
counters are exceeded
to free memory.




PHP-FPM defaults are far from ideal. We recommend the following settings:

D I N AM I c PM Process Manager
As discussed earlier, set the process manager to dynamic.

pm = dynamic

Max Children

This sets the maximum creatable number of child processes when using the static or dynamic
process managers. Similar to the Apache MaxClients directive, this sets a hard limit on how many
parallel PHP-FPM requests can be processed.

It is important to consider available system memory and the amount used by each PHP
process when setting this variable. Setting it too high can result in out-of-memory conditions.
Benchmarking various settings will also allow for proper tuning. Even in systems with a hefty
surplus of memory, there are finite CPU cores available to process each request.

pm.max_children = 96

Start Servers

Start servers sets the number of child processes to be listening upon starting the PHP-FPM
process. With the dynamic PM, this normally does not require a very high setting because new
child processes will be created as demand increases. Setting it with a moderate value helps curb
memory usage, and offers a solid compromise between the static and ondemand PMs.

pm.start_servers = 8

Minimum and Maximum Spare Servers

Since the dynamic PM creates additional processes based on demand, it will create new child
processes up to the value set by pm.max_children. The number of child processes fluctuates and is
determined by pm.min_spare_servers and pm.max_spare_servers. We typically set these to
one-half and double the pm.start_servers variable, respectively.

4

pm.min_spare_servers 1

pm.max_spare_servers

Maximum Number of Requests

The maximum number of requests-per-process can be specified with pm.max_requests.
This prevents potential memory leaks by limiting the memory used by a single process.

We recommend setting this variable relatively high to limit the unnecessary destruction and
recreation of processes. Depending on site traffic, a process may sit idle for minutes to days.
If it appears an application consumes excessive memory due to such a leak, this value

can be decreased.

pm.max_requests = 16384

N

The Definitive Guide to Optimizing Magento 2




PHP OPCACHE

Opcache is a PHP-caching extension that accelerates
performance by optimizing and storing precompiled
script bytecode in shared memory. With Opcache,

frequently used static code can be read directly from
memory, skipping the intensive compilation process.

Opcache has been bundled every version of PHP
since PHP 55, including the most current PHP 7.2.
Opcache has replaced the use of older caching
utilities such as eAccelerator and APC. As Opcache
can drastically increase site performance, it is worth
spending time tuning its variables to match the
environment and application.

Enabling Opcache within PHP will allow Opcache to
function, but for large applications like Magento 2,
the default variables are not ideal and will limit the
potential performance gains when using Opcache.
However, when configuring Opcache for a specific
application, it is critical to provide adequate memory
for Opcache. Otherwise, the entire cache runs the risk
of becoming invalidated, essentially disabling it.

The recommended variable changes for Magento 2
are listed below. These are applied to our own
systems as well to the benchmark later in this paper.
The following variables are sufficient for most
Magento 2 installations; however, it is best practice
to monitor the Opcache status variables to make
sure your cache is operating effectively.

The Definitive Guide to Optimizing Magento 2

29



I — I —
OPCACHE . MEMORY_CONSUMPTION OPCACHE.VALIDATE_TIMESTAMPS

opcache.memory_consumption sets the size of the shared opcache.validate_timestamps enables the option to check
PH P memory storage used by Opcache. It defaults to 64MB for each file for changes at a specified interval. This allows Opcache to

caching all compiled scripts, which is inadequate for a Magento flush any cached files that may have changed on disk. This

2 installation. validation is unnecessary in production, where files change only
0 PCAC H E during planned code deployments. Setting this value to zero in

Calculating how much memory is necessary for a given production systems removes the overhead of Opcache checking

application requires some trial and error. Opcache provides for file modifications at the interval specified by

some tools for monitoring internal variables with the opcache.revalidate_freq, which defaults to 2 seconds:

opcache_get status() function. The “free memory” value

lists how much memory is available to Opcache and can be used opcache.validate timestamps=0

to determine the sizing of opcache.memory_ consumption.

For another metric, if opcache_get status() reports With opcache.validate_timestamps=0, you must manually

oom_restarts as greater than zero, this indicates an restart your PHP processes after any code changes to force a cache

out-of-memory event. flush. On development systems or production systems implementing

frequent small code changes, we recommend setting this variable to

Attention: Opcache will only restart if wasted memory inside 1 to prevent the need to restart PHP after each change.

Opcache exceeds the max_wasted percentage. If this is not

met and the cache is full, Opcache will not restart and any opcache.validate_timestamps=1

cached items will not be used, effectively disabling your cache. | —

Based on our research and experience, a setting of 512MB is

adequate for most Magento 2 installations. With this setting, OPCACH E . REVAL I DAT E_F REQ
out-of-memory events are rare, but still sometimes occur on
larger sites with many extensions or a surplus of code. Servers

running multiple sites call for additional caution. Because
Opcache is bound to the master PHP process, all sites on the

It is critical to
provide
adequate memory

The revalidation frequency is how often Opcache checks for file
changes when opcache.validate timestamps is enabled.
The default of 2 seconds is somewhat aggressive; we recommend

server use the same Opcache configuration, even if those sites . .
are in different PHP-FPM pools. For these reasons, the Opcache doubling this value to 4 seconds. for Opcache.
status should be monitored for out-of-memory conditions. opcache.revalidate freq=4 Otherwise, the

entire cache runs
el the risk of

OPCACHE .MAX ACCELERATED FILES OPCACHE . INTERNED STRINGS BUFFER [E<hihY

invalidated,
opcache.max_accelerated files is the maximum number String-interning is a space-saving method of storing duplicate :
of keys or filesin the Opcache hash table. This defaults to 2000 strings in memory by only storing one copy of each string, and essentially
cacheable files, but internally this is increased to a higher referencing the copies with pointers. This variable sets the amount disabling it
prime number to ensure consistent hashing. of memory in megabytes to allocate string-interning. By default,

Opcache sets this variable to only 4MB; we recommend increasing

The list of primes is hard-coded into the Opcache code and as this value to 48MB.
follows: 5, 11, 19, 53, 107, 223, 463, 983, 1979, 3907, 7963, 16229,
32531, 65407, 130987, 262237, 524521, 1048793, 2097397, 4194103, opcache.interned_strings buffer=48

8388857, 16777447, 33554201, 67108961, 134217487, 268435697,
536870683, 1073741621, 2147483399

|
Note that when setting this variable, the value will be rounded

A f the | iables, thi [t i h
té‘?ge?:l 62?%%%6%{@ Snticipated. For oxample, 140000 would OPCACHE . MAX_WASTED_PERCENTAGE
round up to .

The maximum value is 100000 in PHP 55.6 and earlier, and opcache.max_wasted_percentage is the percentage of wasted

1000000 in all later versions. space in Opcache necessary to trigger a restart. This variable
defaults to 5 percent, which is generally regarded as safe. This

A default Magento 2 installation contains roughly 35000 PHP value can be increased to prevent unnecessary restarts that would

files. We recommend increasing the default to 65407 which invalidate the cache when the cache is not full. Generally, this is

roughly doubles the number of Magento PHP files . This prevents not a concern if the opcache_memory consumption is

most out-of-memory conditions, and it gives headroom for

custom development, plug-ins, and other customizations. set high enough

The Definitive Guide to Optimizing Magento 2 31



APACHE

The Definitive Guide to Optimizing Magento 2

APACHE

SOFTWARE FOUNDATION

One of the most major changes from CentOS 6
to CentOS 7 was the switch to the Apache 2.4
webserver. CentOS 6 included Apache 2.2 within
its base packages, which now lack some modern
features, namely HTTP/2.

HTTP/2 is a revision of the original HTTP 11
protocol released in 1999. It focuses on improving
performance, perceived end-user latency, and use
of a multiplex connection between a webserver
and browser. HTTP/2 is currently supported by

all major browsers and is supported by Apache
2.4.17 and Nginx 195, and later. If your web server
supports it, we strongly recommend using HTTP/2.

Apache 2.4 adds a third type of multi-processing
module (MPM) to the existing prefork and worker
MPMs: event. The event MPM brings similar
benefits found in Nginx to Apache. Each has
pros and cons, though the event MPM earns

our recommendation.

33



APACHE

EVENT MPM:
KEY BENEFITS

The chief advantages of event MPM are the ability to process more
requests than worker MPM while using the same memory footprint.
Event MPM also allows longer keepalives without the downside of
holding up threads.

Because of these advantages, we recommend event MPM over
prefork and worker. The event configuration itself is highly dependent
on the system hardware responsible for running Apache. Available
memory, processing power, and consideration for any other services
running on the machine will guide configuration.

In our benchmark, our virtual machine has 20 cores and 24GB of
memory, and used the Apache configuration below:

<IfModule event.c>

StartServers 4
ServerLimit 32
ThreadLimit 64
ThreadsPerChild 64
MaxRequestWorkers 2048
MaxConnectionsPerChild 8192
</IfModule>
KeepAlive On
MaxKeepAliveRequests 100
KeepAliveTimeout 5

The Definitive Guide to Optimizing Magento 2

PREFORK MPM

WORKER MPM

EVENT MPM

Prefork MPM is the simplest of the three multi-processing modules.
Prefork is non-threaded, meaning that individual full Apache child
processes are spawned when Apache launches, and each process
can only handle a single connection.

Because of this, each Apache process contains all Apache
configuration, modules, and so on, which is not memory efficient.
Since there are no threads to help handle connections, a full
Apache process must handle each connection individually. No
other connections can be handled by a child process until the
existing connection is closed. Prefork is best used for non-
thread-safe application and handler configurations; for example,
where mod_php is used over the more efficient PHP-FPM.

Worker MPM solves the memory-overhead issue of prefork by
supporting threading. With worker, it is possible to start a fewer
number of child Apache processes from the parent process.

Each of these child processes will then process incoming connections
in threaded processes, which uses far less memory. Threaded
processes share the memory with the child process that

spawned it, with each thread handling its own connection and
including all requests for the connection.

Event MPM is similar to the worker MPM and improves performance
in several key areas. With worker, each thread is bound to a single
connection, and no other connections can be processed by a thread
until its connection is closed. Event, however, uses threads to handle
requests, not connections. Each established connection ties up a
thread with handling requests, but only until the requests are
complete. Once complete, even if the connection is still established,
event MPM makes these threads available to process additional
requests. The connections are managed by the parent process,
leaving these threads available to handle any additional requests.

35



MYSQL

The Definitive Guide to Optimizing Magento 2

MySOolL.

Our CentOS 6 platform used Percona Server
instead of the standard version of MySQL. As
detailed in our white paper, Percona Server Versus
Percona XtraDB Cluster: A Magento Case Study,we
chose Percona because it 1) is compatible with
MySQL, 2) is open source, and 3) performs better
than MySQL. We have historically used Percona
server for all Magento 1 and Magento 2 plans

with great success.

Moving to CentOS 7, we switched from Percona

to MariaDB, which is another high performance,
open source replacement for MySQL. MariaDB is
now included with base CentOS 7, translating to
a platform with less external dependencies and
a simplified deployment process.

MariaDB has an extensive amount of tunable
variables. For the entire production my.cnf file
usd in this benchmark, refer to the GitHub repo at
https://github.com/nexcess/magento-whitepaper-
april-2018.

37


https://www.nexcess.net/resources/white-papers/magento-percona
https://www.nexcess.net/resources/white-papers/magento-percona
https://github.com/nexcess/magento-whitepaper-april-2018

INNODB_BUFFER POOL_SIZE INNODB LOG_FILE SIZE

M I SQ L innodb_buffer pool size contains the working data set for The log files (often with filenames of ib_logfile[0-9] *) contain

all tables using the InnoDB storage engine. The optimal size is encoded change requests to InnoDB tables. These recorded changes

one that can accommodate the entire working data set within can be replayed by MariaDB during crash recovery to correct data

the buffer pool while also providing room for future growth. from incomplete transactions. The log file size should be large

Maintaining a sufficiently large buffer pool provides space for enough to accommodate the logging from routine data changes;

new entries and removes the need to flush infrequently used overly small log files can stall write-inquiries and degrade MYSQL SEI'TINGS

pages to disk to conserve that space. performance whenever InnoDB attempts to free space within the

| - log files. AT A GLANCE

Extremely undersized buffer pools can lead to excessive disk S _ _ _

writes and performance degradation. If necessary, systems Historically, it was unwise to use exceedingly large log files because

dedicated to MariaDB allow for settings as high as 75 - 80 they delayed server startup. Due to a more efficient recovery process innodb_buffer pool size

percent of available memory. in newer versions of MariaDB, this is no longer a cause for concern. e
The best way to tune this is by testing performance with transaction

On instances where the database runs on the same server as the traffic that resembles anticipated traffic 1n production. database runs on the same

webserver, we set this value to 50 percent of available memory. server as the webserver, we set
On our servers, this defaults to 10 percent of the size of the this value to 50 percent of

innodb_buffer_pool_size value available memory.

[ W innodb buffer pool instances
We set the number of pool
INNODB_BUFFER_POOL_INSTANCES QUERY_CACHE_SIZE e
This variable sets the number of regions into which the total This variable designates the size of the c;ache for storing _ innodb_log buffer_ size
innodb_buffer pool size will be split. For example, a 20GB evaluated query results. If the same queries are frequently submitted On our servers, we set this
innodb_buffer_pool_size configured with four to MariaDB, enabling this cache will accelerate response times. Valle 1o onesixth the size of
innodb_buffer_pool instances results in four buffer pool . , . :
regions of 5GB. Each buffer pool instance contains its own buffer There is a performance penalty when searching for query results not [RUENRREEEREERIEIS
pool-specific structures such as pool mutex, free and LRU lists, stored in the query cache. Furthermore, for high concurrency traffic
and so on. For a larger number of buffer pool instances, the end co#pled r;/\”th ?t h1ght'quetrles—per_—secondt(QPS) ftéll_]te performaRceDmay innodb_log file size
result is a higher potential InnoDB throughput. surrer when attempting to acquire a mutex on the query cache. bue uare thic
Serp =P to this, increasing the query cache requires some consideration. For On our servers, this defaults to
We set the number of pool instances to 4. workloads like Magento 2, setting the query cache too high will hurt 10 percent of the size of the
performance. innodb_buffer_pool_size

We recommend setting query_cache_size to 2 percent of avail- ENE

able memory, with an upper [imit of 128MB.

guery cache size
We recommend setting
query cache size to 2

I N NODB_L OG_BU F F E R_S I Z E TM P_TAB L E_S I Z E AND percent of available memory,

with an upper limit of 128MB.

This, along with the InnoDB log file, constitute part of the redo MAX_H EAP_TABI— E_S I Z E

log system. The log buffer holds redo log records before they
ar? written to the log file. Poor or undersized log buffers canre-
sult

in frequent writes to the log files in order to free pages for the
recording of incoming changes. For transactions that change
large amounts of rows, maintaining a larger log buffer size
prevents excessive disk I/0O. The best way to tune this is by
testing performance with the anticipated traffic

in production.

tmp_table size and

: . . max_heap table size
The lower of these two values determines the maximum size of = = = :
an in-memory temporary table before it is converted into an on-disk MEEEREIEESSREEICReERIEY
MyISAM temporary table. These values should be high enough to fit enough to fit the majority of
the majority of temporary data sets into memory. Note the entire temporary data sets into
amount of memory is not pre-allocated at the time of thread

. memaory.
creation. ry

On our servers, we set this value to one-sixth the size of the
innodb_log_file_size.

The Definitive Guide to Optimizing Magento 2 39



)

Magento 2

Like its predecessor, Magento 2 provides several
layers of caching to improve store performance.

MA G E N To 2 The size and complexity of Magento 2 means
enabling and properly configuring the built-in
CAC H I N G caching is crucial.

The Definitive Guide to Optimizing Magento 2 a



S ESSI Due to Redis Due _to the ab_ove reasons, we recommend memory-backed _
ersistence, the caching for high performance session storage. Magento 2 natively
CAC H I N G ,7\/1agento team MEMORY-BACKED supports two memory-based solutions, Memcached and Redis.
prefers Redis over ngMCACHED Due to Redis persistence, the Magento team prefers Redis over
Memcached for ) I;e/legjcache_d fozr sesdsilor; Storag_e,tand SO dl? wgt. Implelgr;ergtecé 1nk
. edis version 2 and later, persistence makes it possible to bac
session storage, up cached data like cart contents. In the event of an unexpected
and so do we. restart, Redis retains this data; Memcached does not. After a

Memcached flush, store visitors returning to your site wil find

Magento 2 provides three their carts empty.

options for user session

storage: files, database, or @ To prevent unwelcome surprises during deployment to the

memory-based backend ke production environment, we also recommend Redis for staging

Memcached or Redis and development environments. Several options are available for
configuring Redis persistence, but this is a topic best served by
a separate publication.

Previously, we have recommended Memcached for sessions due
to Redis causing session-locking bugs with Magento 2. These
issues were reported resolved in Magento 2.0.6, but persisted
until Magento 222, as confirmed by the community and our
own testing. We recommend checking your version to verify
compatibility.

Memcached Configuration for Session

If you must use Memcached instead of Redis, we recommend configuring Memcached to listen on a local
Unix socket. Local sockets reduce networking overhead and provide a slight performance increase.

Files serve as the default storage location for all user session

FILES data. While this setting works for staging, development, and low If your Memcached deployment is an external instance or a cluster, a standard TCP or UDP connection will
volume production environments, it does not scale to high be required. Two other variables within the Memcached config will need to be considered.
traffic sites due to the latency of file I/0O operations. With solid

state drives it is less of a concern, although memory-backed
solutions still offer advantages. In most load-balanced, clustered
environments, where a user may be spread across multiple web Maxconn

. ! Cachesize
nodes, memory-backed solutions are ideal.

Defines the maximum amount of simultaneous
connections to Memcached. Any additional
: : . connections beyond this number will be queued.
DATABASE queries t0 3 busy database already handling thousands of queries The default for this limit is 1024, however, we
P P ' recommend increasing it to 4096, which is
sufficient for most deployments.

is the upper limit of the cache in
megabytes. We set this value to 256MB for
our deployments. Memory usage can be
monitored by comparing bytes to
limit_maxbytes in the stats.

Using the database for sessions storage is an option, but adding

If bytes is approaching 1imit_maxbytes,

If you are a very high traffic site, monitor the : :
increase your cache size.

Memcached 1isten_disabled num statistic
for blocked connections.

)

The Definitive Guide to Optimizing Magento 2




DEFAULT AND
FULL-PAGE

CACHES

Magento 2 supports various options for the default and full-page
caches (FPCs), including the file system, database, or Redis. For
production stores, we recommend enabling both the default and
full-page caches, with the exception of those running Magento 2 with
Varnish. This exception is discussed in greater detail on page 47.

As with the session cache, file or database-backed storage are
recommended only for development environments and rarely, if ever,
for production. Recommend by the Magento team, Redis has proven
to be the preferred method of cache storage in terms of performance
and scalability. Desirable features include replication and backup
support, as well as tag support to allow for flushing only portions

of the cache.

As discussed in the Session Caching section on page 46-47, backups
allow data to persist through restarts and replication, and allow for
high availability configurations when it becomes necessary to scale
beyond one Redis instance.

Two options exist for configuring the Redis instances for the default
and full-page caches. In the first, a single Redis instance uses two
separate databases, one for each cache. The second option uses two
separate Redis instances and dedicates one to each cache. The
Magento 2 configuration in env.php supports both setups.

Our benchmark uses a single instance of Redis with three separate
databases, one each for the default, session, and full-page caches.
Larger deployments would benefit having separate Redis instances
for each cache type, but for the limited scale of a single virtual
machine, a single instance is adequate and creates no observable
connection contention.

When using a Redis database for sessions within another instance of
Redis, it is critical to note that Redis eviction policies are global, not
database-specific. If Redis runs out of memory, there is the possibili-
ty that client session data could be evicted. This serves as another
example of why it is crucial to make sure Redis does not run out of
memory and begin evicting data.

The Definitive Guide to Optimizing Magento 2

MAXMEMORY

MAXMEMORY
POLICY

maxmemory sets the maximum amount of memory to be used by

Redis to cache data. We normally start at a value of 512MB for both
the default and full-page caches, then monitor Redis as the cached
data grows to verify evictions from Redis reaching the memory limit.
Failure to set this value places no memory limit, potentially allowing
Redis to consume all system memory.

maxmemory 512MB

maxmemory-policy sets the eviction policy for Redis. For Magento
2, we recommend using the least recently used algorithm, which will
remove low-demand keys and conserve memory.

maxmemory-policy allkeys-1lru
To verify adequate memory, confirm the used_memory statistic is

less than maxmemory, and monitor the evicted_keys variable to
confirm the absence of forced evictions.

45



VARNISH

Varnish is an HTTP reverse proxy that can
dramatically increase site performance by caching
content in memory in front of the web server.
Processes normally handled by Apache and PHP are
now handled by Varnish as it directly delivers assets
from memory to users’ browsers.

The downside to Varnish is its complexity.
Controlling which content is cached, which is not,
and maintaining proper invalidation of cached data
are difficult tasks. For Magento 1, our Turpentine
extension simplified the configuration of Magento
with Varnish. With Magento 2, Varnish support is
built-in, and it directly replaces the full-page cache
within the platform.

The Definitive Guide to Optimizing Magento 2

47



USING VARNISH
WITH HTTPS
PROTOCOL

Varnish does not

natively support

TLS connections.

Varnish does not natively support TLS connections.

Only unsecured traffic can pass through it, and it
cannot handle any type of HTTPS traffic. With
modern security standards requiring all traffic to
be encrypted, this is impractical for Magento 2
stores.

The solution to this is to use a TLS terminator in
front of Varnish. This offloads TLS processing to a
separate service, which then passes all traffic as
HTTP traffic to Varnish.

There are many candidates for TLS terminator
services, including Pound, Nginx, Stunnel, Hitch,
Stud, and Haproxy, among others. Though these
are all high performance solutions, we prefer
Haproxy and Nginx.

The Definitive Guide to Optimizing Magento 2

HAPROXY AS A
REVERSE PROXY

NGINX AS A
REVERSE PROXY

Haproxy, a TCP/HTTP load balancer, can function as a TLS terminator
while also providing scaling and redundancy. When configured in
front of Varnish, Haproxy can bypass it if becomes unavailable and
route traffic directly to Apache. Haproxy can be also used to easily
scale horizontally because all TLS termination occurs in front of the
web servers. As of release 18, Haproxy supports HTTP/2.

The benchmarks using Varnish within this guide used Haproxy as a
TLS terminator.

Nginx also qualifies, but it much more than just a TLS terminator. As
a full-featured web server itself, it can be configured as a reverse
proxy while it provides additional benefits.

One of these benefits is microcaching. The concept behind
microcaching is to cache all static and dynamic content in a site for
time periods as short as 1 second. For high-traffic sites with heavy
dynamic content, this prevents resource-hungry content from being
generated more than once per second, regardless of how many
visitors on your site.

In most cases, allowing this content to be delayed for seconds is
acceptable. However, in Magento 2, it is not possible to cache
dynamic content because every page load is unique to a user
session. This explains why integrations with reverse proxies like
Varnish tend to be complex; pages are typically separated into
blocks of cacheable static data and dynamic data.

Due to this limitation, Nginx microcaching cannot easily be used for
all Magento 2 content. Typical Magento 2 page-load waterfalls often
involve well over 100 requests for JavaScript and CSS files, which
places heavy load onto the web server. Using the Nginx microcache
to cache these static files removes load from the web server, freeing
it to focus on dynamic requests. This method makes it possible to
set the cache-lifetime for 30 seconds or more.

As demonstrated in the benchmark, the above configuration tends
to greatly increase performance in Magento 2.

49



MAGENTO 2
BENCHMARK

To test various Magento 2 configurations and system settings,

we used the Loadlmpact load testing tool.

CONTENTS

52 Method
54 Results
58 Benchmarking Caveats

60 Recommendations

The Definitive Guide to Optimizing Magento 2

Each test ran three
times, then we
averaged the results,
which are made
more reliable by the
randomized virtual

user behavior.




METHOD

To test various Magento 2 configurations and system settings, we used the Loadlmpact load testing
tool. Compared to many traditional load testing tools that provide results in terms like
requests-per-second or transactions-per-second, Loadlmpact tests better simulate real user traffic.

Loadlmpact test results attempt to reveal how many users can be on a site before it breaks down, at
which point users experience increasing page-load times or pages failing to load altogether. This is a
more useful metric to Magento 2 merchants, as its results are inline with the information provided by
Google Analytics.

Our testing consisted of two user scenarios running in parallel from Ashburn, VA and Palo Alto, CA.
This simulates traffic from the east and west US. coasts to the tested system in our data center in
Southfield, MI. The scenarios consisted of two types running in parallel In one, a virtual user added
four items to cart as described above, and in the other, a virtual user hit only the main page of the
site.

Unless specified otherwise, all tests ran for 10 minutes and started with one virtual user ramping up
to 250 users. Each test ran three times, then we averaged the results, which are made more reliable
by the randomized virtual user behavior. The final data is then put through a moving average to
smooth the graphs for easier test comparison.

How Loadlmpact Simulates Traffic

To simulate real world traffic, Loadimpact provides a browser tool to record user scenarios. For our tests, we used this tool to
simulate the activity of a user visiting a typical site. Our test scenarios followed a simple model of a user landing on the
main home page of the site, browsing to various categories, adding four products to their cart, then proceeding to checkout.
To simulate real users reading content on each page, we included randomized delays of 2 to 10 seconds between each user
interaction. This process is then repeated, continually ramping up the number of users to a set maximum amount. The
output from this testing shows complete load time for the scenario. By comparing these load times to the number of virtual
users, it is possible to deduce where the site breaks down under a given load.

Most typical sites have low conversion ratios, so our test is a best case scenario of every visitor on the site adding items
to cart and proceeding to checkout. We chose to run our tests this way as it is more demanding on the system and appli-
cation by creating more frequent writes of session data.

To more accurately simulate latency, Loadimpact also runs tests from remote locations across the world, and allows
testers to pick those locations during setup. Loadlmpact also permits for the selection of browser types, test criteria
and scenarios, number of virtual users, and test duration.

The Definitive Guide to Optimizing Magento 2

e Dell PowerEdge R430

HARDWARE AND - 2xIntel(R) Xeon(R) CPU E5-2640 v4 @ 240GHz
VIRTUAL MACHINE - 95GB DDR4-2133 ECC RAM
CONFIGURATION . 54 400GB Intel SC SSD Hard drives in RAID-10 in writethrough

e Dell Perc H730 with 1GB cache & BBU

The virtual machine for testing itself was configured with 24GB of
RAM, 20 CPU cores, and 400GB of disk space.

« Magento Open Source version 2.2.2, including the Luma

default demo theme and store

SOFTWARE

CONFIGURATION « All system and service variables were set as described in
the preceding sections

« LetsEncrypt SSL certificate, generated and installed;
all testing traffic took place over HTTPS

« Magento 2 was set to the production mode

 Single tenant compiler was run

« Magento 2 sessions cache: Redis

« Magento 2 default cache: Redis

« For full-page cache testing, the FPC was enabled with Redis

« For Varnish testing, Varnish was configsured and enabled along
with HaProxy for TLS termination

» No external CDN (to allow benchmarking of all assets being
delivered from the server)

53



RESULTS

TEST 1.
FPC WITH REDIS VERSUS DISABLED FPC

The first test reflects a baseline for a store configured on the
specified hardware. Graph 1 compares the performance differences
from the use of the full-page cache enabled with Redis, versus
the full-page cache disabled.

FPC Enabled vs Disabled
Test 1. _ _ § o
FPC with Redis Versus Disabled FPC E o
Test 2: E : —FPC
FPC Versus Varnish g 1
Test 3: ’

e L R R Y e LA L

Winual Users

Nginx Reverse Proxy Versus FPC Versus Varnish

Graph 1: Full-page cache with Redis versus disabled full-page cache.

The results show the advantages of full-page cache. When enabled,
run-times show consistency until the breaking point of about 110
virtual users. At this point, performance degrades, and the site will
be noticeably less responsive for visitors. Comparing this to running
with the FPC disabled, scenario run-times are longer and begin to
degrade at roughly 100 virtual users. At this point, scenario run times
are double those when using the full-page cache.

The Definitive Guide to Optimizing Magento 2 55



Seenanio Load Time (seconds)

8888 88

0

IR RGN G S SR PP CETOPPTOTONT IS PP ES PSSP OSSP OCPPS

TEST 2:
FPC VERSUS VARNISH

As shown in Graph 2, FPC can provide good results, but switching to
Varnish takes those improvements further. For this test, Magento 2
was configured with Varnish instead of the Redis-based FPC. We also
increased the number of virtual users from 250 to 500 in order to
stress the configuration with additional user load. HaProxy was used
as a TLS terminator, handing http traffic off to Varnish.

Varnish vs FPC

— FPC
— VEATER

Virtual Users
Graph 2: Full-page cache versus Varnish.

The results from this test are impressive. By using Varnish, overall
scenario run-times remained relatively consistent. Run-times still
increased with the number of virtual users, but at a much lower rate
than when those with the Redis-backed FPC. While the use of
Varnish does add some additional complexity to the system and
Magento 2 configuration, if your hosting environment does support
it, these results speak for themselves.

The Definitive Guide to Optimizing Magento 2

TEST 3: NGINX REVERSE PROXY
VERSUS FPC VERSUS VARNISH

The final test was a test using Nginx as a reverse proxy in front
of Apache with the microcache enabled. Because Varnish is not
feasible for some instances and hosting plans, this test disabled
Varnish to focus on the improvements provided by Nginx
microcaching alone. Typically, Nginx is easier to implement than
Varnish as a reverse proxy for static assets and is a standard
component of all Nexcess Cloud plans.

Nginx Reverse Proxy vs FPC vs Varnish

EEEEE

Soenana Run Time (seconds)

o

—+
=

Virual Usees
Graph 3: Nginx reverse proxy versus full-page cache versus Varnish.

The results for Nginx microcaching are impressive. The number
of virtual users on the site increased from 110 to 200, an 81%
improvement over using the FPC alone. This gain on virtual users
is made possible simply by enabling Nginx microcaching. Nginx
will not help as much as Varnish or the FPC for very large user
concurrencies, but Nginx is an way to nearly double store
performance with no additional modifications.

57



BENCHMARKING
CAVEATS

Benchmarks
are inherently
imperfect.

While we try to create tests that accurately simulate
traffic, benchmarks are inherently imperfect. Ours is
no exception. While our results provide valuable
comparisons between different server and Magento 2
configurations, it is impossible to account for all
possible variables within the stores themselves.

It is prudent to note the following four caveats.

First, the default Magento 2 theme, Luma, has a
limited number of categories and products. Because
of this limitation, the results may differ from those
in a store with a considerable number of categories
and products.

Second, our tests declined the use of third party
Magento 2 extensions. In real world stores, this is
generally not the case. Third party extensions provide
significant value and many additional features to a
Magento 2 store. That said, not all extensions are
created equal, and some can undermine performance.
It is best practice to limit their use, and to benchmark
the store both before and after enabling any extension.

Third, our tests simulate real visitor traffic, but not truly
random visitor traffic. Generating a test that simulates
thousands of visitors browsing a site and simulating a
real world checkout process at determined conversion
ratios is difficult with the Loadimpact tool

Finally, our testing and resulting benchmarks do not
complete the order process. This is a conventional
omission due to practical limitations of testing, and we
have adopted it here. Processing transactions from start
to finish places more load on the server and database,
though this load is much more significant when
handling large numbers of orders per minute.

The Definitive Guide to Optimizing Magento 2

59



RECOMMENDATIONS

Run a modern version of PHP.

Run at least 7.0, and 7.1 is ideal until Magento 2 announces full
support for 7.2. Moving from PHP 5 to PHP 7 alone can double
your store’'s performance.

Tune your web stack.

Properly tuning Apache, Nginx, PHP-FPM, MySQL, and Opcache is
crucial for high performance. The default options and directives
are far from ideal for any Magento 2 store. Proper monitoring of
these services is also critical, as some require adjustment as
your store grows.

Enable the default and session caches with Redis.

Settings up the default cache and sessions caches to use Redis
provides numerous benefits, including better performance and
the ability to cluster at scale.

Enable the full-page cache.

Even if a Redis instance is not available for your hosting
environment and you must use local files for caching, this is still
a considerable improvement over not using the full-page cache
at all. The full-page cache pulls load away from both the PHP
interpreter and MySQL. Enabling Redis for the full-page cache
will increase site performance even further.

Use Varnish for full-page cache.

If your environment supports it, enabling Varnish for the
full-page cache over Redis significantly improves performance.
In testing, Varnish outperformed Redis as a full-page cache by
allowing several hundred more users on a site. The use of
Varnish creates additional complexity, but the built-in support
within Magento 2 makes it much easier than in the past. Using
Varnish will also require a TLS terminator to be effective for
both HTTP and HTTPS connections.

Use Nginx as a reverse proxy which provides TLS
termination and static-content cache.

Placing Nginx in front of your site and configsuring a microcache
for static content can improve performance up to 81 percent.
With the Nginx microcache enabled, static content such as
JavaScript, CSS, and images are cached, providing instant
responses to queries and keeping load off the primary webserver.
This configuration can benefit any Magento 2 site configuration,
with or without Varnish as the FPC. Nginx also handles TLS
termination effectively for stores using Varnish.

The Definitive Guide to Optimizing Magento 2

61



The system and Magento 2 configurations in
this guide are based on more than a decade of
experience with the Magento and Magento 2
platform.

Stores applying these suggestions will
co N c LU D I N G significantly outperform stores that do not. Even
so, a “one size fits all” solution is impractical,
S U M MA RY and many directives and variables specific to
your environment must also be taken into

consideration.

The Definitive Guide to Optimizing Magento 2 63



Brad Boegler is Director of System Operations
ABOUT at Nexcess. With over a decade in systems
THE AUTHOR administration, he oversees our internal systems

and was the author of Magento Hosting - Best
Practices for Optimum Performance.

Few systems at Nexcess escape his insight. When

not monitoring our hosting infrastructure or

A P P E N D I x upholding PCI security standards, Brad celebrates
life with his family and plays a mean game of
Puerto Rico.

For details regarding all system configurations,
GITHUB visit our GitHub repo at https://github.com/
RESOURCE nexcess/magento-whitepaper-april-2018.

The Definitive Guide to Optimizing Magento 2 65


https://www.nexcess.net/resources/white-papers/magento-best-practices
https://www.nexcess.net/resources/white-papers/magento-best-practices
https://github.com/nexcess/magento-whitepaper-april-2018
https://github.com/nexcess/magento-whitepaper-april-2018
https://www.linkedin.com/in/brad-boegler-67769112a/
https://www.linkedin.com/in/brad-boegler-67769112a/

NOTES

The Definitive Guide to Optimizing Magento 2

67



https://github.com/nexcess/magento-whitepaper-april-2018

Nexcess - Beyond Hosting

21700 Melrose Ave
Southfield, Ml 48075

Phone: +1.866.639.2377
Fax: +1.248.281.0473

http://twittter.com/nexcess

n ITM

NEXCESS

beyond hosting.

sales@nexcess.net


https://github.com/nexcess/magento-whitepaper-april-2018
https://www.nexcess.net/
mailto:sales@nexcess.net
https://twitter.com/nexcess

	Executive Summary
	Contents
	Software Changes from Magento 1 to Magento 2
	Technological Landscpae: Then Versus Now
	Optimizations
	Magento 2 Benchmark
	Concluding Summary
	Appendix



